EN
Поиск по сайту
Новости AKTAKOM(574)
Новости Anritsu(121)
Новости Fluke(134)
Новости Keithley(78)
Новости Keysight Technologies(666)
Новости Metrel(24)
Новости National Instruments(265)
Новости Pendulum(20)
Новости Rigol(96)
Новости Rohde & Schwarz(558)
Новости Tektronix(225)
Новости Texas Instruments(23)
Новости Yokogawa(132)
Новости Росстандарта(154)
АКТАКОМ
Anritsu
FLUKE
Keithley Instruments
Keysight Technologies
METREL
NI
RIGOL
Rohde & Schwarz
Spectracom
Tektronix
Texas Instruments
Yokogawa
Росстандарт
Авторизация
Логин:
Пароль:
Забыли свой пароль?
Зарегистрироваться
Информация
АКТАКОМ - Измерительные приборы, виртуальные приборы, паяльное оборудование, промышленная мебель

Закон всемирного тяготения

Об Энциклопедии измерений
Поиск:  

Класси́ческая тео́рия тяготе́ния Ньюто́на (Зако́н всео́бщего тяготе́ния Ньюто́на) — закон, описывающий гравитационное взаимодействие в рамках классической механики. Этот закон был открыт Ньютоном в 1666 году. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m_1 и m_2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:

F = G \cdot {m_1 \cdot m_2\over R^2}

Здесь G — гравитационная постоянная, равная  6{,}67384(80) \cdot 10^{-11} м³/(кг с²).

Свойства ньютоновского тяготения

  • В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем. Это поле потенциально, и функция гравитационного потенциала для материальной точки с массой M определяется формулой:
 \varphi(r) = -G \frac{M}{r}
В общем случае, когда плотность вещества ρ распределена произвольно, φ удовлетворяет уравнению Пуассона:
\Delta \varphi = -4 \pi G \rho,
Решение этого уравнения записывается в виде:
\varphi = -G \int {\frac {\rho dV}{r}} + C,
где r — расстояние между элементом объёма dV и точкой, в которой определяется потенциал φ, С — произвольная постоянная.
  • Сила притяжения, действующая в гравитационном поле на материальную точку с массой m, связана с потенциалом формулой:
F(r) = - m \nabla \varphi(r)
  • Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.
  • Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.

Исторический очерк

Закон тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда, Рена и Гука. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что:

  • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
  • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

Теория Ньютона, в отличие от гипотез предшественников, имела ряд существенных отличий. Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической. Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

Со временем оказалось, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел, и он стал рассматриваться как фундаментальный. В то же время ньютоновская теория содержала ряд трудностей. Главная из них — необъяснимое дальнодействие: сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс. В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия.

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году, с созданием общей теории относительности Эйнштейна, в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия, оказалась приближением более общей теории, применимым при выполнении двух условий:

  1. Гравитационный потенциал в исследуемой системе не слишком велик: \frac{\varphi}{c^2} \ll 1.
  2. Скорости движения в этой системе незначительны по сравнению со скоростью света: \frac{v}{c} \ll 1.

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского, около 1,6·10−35 м).

Источник: ru.wikipedia.org


Возврат к списку

Читайте бесплатно
№ 4 Декабрь 2021
КИПиС 2021 № 4
Тема номера:
Современная измерительная техника
События из истории измерений
26.02.1786
День рождения
Доминик Франсуа  Араго
26.02.1911
День рождения ученого, исследовавшего поляризацию вакуума
Мигдал Аркадий Бейнусович
Конвертер единиц измерения
Мы используем файлы 'cookie', чтобы обеспечить максимальное удобство пользователям.