EN
Поиск по сайту
Новости AKTAKOM(574)
Новости Anritsu(121)
Новости Fluke(134)
Новости Keithley(78)
Новости Keysight Technologies(666)
Новости Metrel(24)
Новости National Instruments(265)
Новости Pendulum(20)
Новости Rigol(96)
Новости Rohde & Schwarz(558)
Новости Tektronix(225)
Новости Texas Instruments(23)
Новости Yokogawa(132)
Новости Росстандарта(154)
АКТАКОМ
Anritsu
FLUKE
Keithley Instruments
Keysight Technologies
METREL
NI
RIGOL
Rohde & Schwarz
Spectracom
Tektronix
Texas Instruments
Yokogawa
Росстандарт
Авторизация
Логин:
Пароль:
Забыли свой пароль?
Зарегистрироваться
Информация
АКТАКОМ - Измерительные приборы, виртуальные приборы, паяльное оборудование, промышленная мебель

Теорема Котельникова

Об Энциклопедии измерений
Поиск:  

О выборе числа отсчетов и восстановлении сигналов

Принципиально важным теоретически и практически является вопрос о выборе числа отсчетов сигнала для его преобразования в цифровую форму и дальнейшего восстановления сигнала по его отсчетам. Как часто надо делать равномерные выборки произвольного сигнала, чтобы после преобразования в цифровую форму, а затем снова в аналоговую была сохранена форма сигнала? Ответ на этот важный вопрос дает теорема об отсчетах или теорема Котельникова (за рубежом именуемая также теоремой Найквиста, теоремой об отсчетах и т.д.): «Если спектр сигнала e(t) ограничен высшей частотой fВ, то он без потери информации может быть представлен дискретными отсчетами с числом, равным 2×fВ». При этом сигнал восстанавливается по его отсчетам e(k×dt), следующим с интервалом времени dt=1/fВ, с помощью фильтра, реализующего восстановление по формуле:

(1)

Для восстановления непрерывного сигнала по его выборкам достаточно располагать функцией sinc(t)=sin(t)/t с учетом ее особого значения sinc(t)=1 при x=0. Рисунок показывает пример дискретизации некоторого сигнала (нарастающая, а затем спадающая экспоненты) с периодом квантования dt и затем восстановления сигнала по выражению (1). Несмотря на малое число отсчетов (их 11) восстановленная форма сигнала весьма близка к форме исходного сигнала.

Демонстрация дискретизации и восстановления сигнала в системе компьютерной математики Mathcad

Демонстрация дискретизации и восстановления сигнала в системе компьютерной математики Mathcad

Чтобы восстановить исходный сигнал по его отсчетам надо иметь численные значения их и значение интервала дискретизации dt. Все эти данные нетрудно хранить в запоминающем устройстве. Если увеличить dt при восстановлении сигнала по формуле (5.1) в k раз, то восстановленный сигнал без изменения формы будет растянут в k раз и его можно отобразить на экране достаточно низкочастотной ЭЛТ с простым низкочастотным усилителем.

Для восстановления сигнала не обязательно пользоваться фильтром на основе базиса Котельникова. Возможно применение и более простых фильтров, вплоть до обычного конденсатора или RC-фильтров нижних частот. Правда, при этом нужно несколько увеличивать частоту выборок.


Возврат к списку


Материалы по теме:

Поделиться:
Читайте бесплатно
№ 4 Декабрь 2021
КИПиС 2021 № 4
Тема номера:
Современная измерительная техника
События из истории измерений
15.07.1904
День рождения одного из первых отечественных лауреатов Нобелевской премии
Черенков Павел Алексеевич
Конвертер единиц измерения
Мы используем файлы 'cookie', чтобы обеспечить максимальное удобство пользователям.