EN
Поиск по сайту
Новости AKTAKOM(574)
Новости Anritsu(121)
Новости Fluke(134)
Новости Keithley(78)
Новости Keysight Technologies(666)
Новости Metrel(24)
Новости National Instruments(265)
Новости Pendulum(20)
Новости Rigol(96)
Новости Rohde & Schwarz(558)
Новости Tektronix(225)
Новости Texas Instruments(23)
Новости Yokogawa(132)
Новости Росстандарта(154)
АКТАКОМ
Anritsu
FLUKE
Keithley Instruments
Keysight Technologies
METREL
NI
RIGOL
Rohde & Schwarz
Spectracom
Tektronix
Texas Instruments
Yokogawa
Росстандарт
Авторизация
Логин:
Пароль:
Забыли свой пароль?
Зарегистрироваться
Информация
АКТАКОМ - Измерительные приборы, виртуальные приборы, паяльное оборудование, промышленная мебель

Закон Ома

Об Энциклопедии измерений
Поиск:  

Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году и назван в честь его первооткрывателя Георга Ома.

В своей оригинальной форме он был записан его автором в виде :  X\! = {a \over {b+l}} (1),

Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника тока, постоянная в широких пределах и независящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС)  \varepsilon\!, l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r.

В таком случае в современных терминах, и в соответствии с предложенной автором записью, формулировка Ома (1) выражает

Закон Ома для полной цепи:

I\! = {\varepsilon\! \over {R+r}}, (2)

где:

  •  {\varepsilon\!} — ЭДС источника напряжения(В),
  • I\! — сила тока в цепи (А),
  • R\! — сопротивление всех внешних элементов цепи (Ом),
  • r\! — внутреннее сопротивление источника напряжения (Ом).

Из закона Ома для полной цепи вытекают следствия:

  • При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
  • При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Часто выражение:

 U\! = IR (3)

(где U\! есть напряжение или падение напряжения или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

 {\varepsilon\!} = Ir + IR = U(r) + U (R) (4)

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

К другой записи формулы (3), а именно:

I\! = {U \over R}, (5)

Применима другая формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Выражение (5) можно переписать в виде:

I\! = {U G}, (6)

где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо, впоследствии переименованный в Си́менс (обозначение: См, S).

Мнемоническая диаграмма для Закона


Схема, иллюстрирующая три составляющие закона Ома


Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

В соответствии с этой диаграммой формально может быть записано выражение:

R\!= {U \over I}, (7)

Которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

R\!= {\varrho l \over s}, (8)

где:

  • \varrho \! — удельное сопротивление материала, из которого сделан проводник,
  • l\! — его длина
  • s\! — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередачи (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока P\! =  {\varepsilon\! I\!} при минимальных потерях мощности в линии передачи P (r)\! =  UI , где U\! = Ir , причём r\! на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора, (последнее всё же меньше сопротивления линии передач).

В таком случае потери мощности будут определяться выражением:

P(r)\! =  {{P\!} ^2 r}\over{\varepsilon }^2 (9)

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом желательно всемерное её увеличение, что ограничивается электрической прочностью обмотки генератора. И повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако, для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в ней возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее, практически используемое, напряжение в дальних ЛЭП не превышает миллиона вольт.

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём, излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Закон Ома в дифференциальной форме

Сопротивление R\! зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

\mathbf{j} = \sigma \mathbf{E}

где:

  • \mathbf{j} — вектор плотности тока,
  • \sigma\! — удельная проводимость,
  • \mathbf{E} — вектор напряжённости электрического поля.

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.

Если ток является синусоидальным с циклической частотой \omega, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

\mathbb{U} = \mathbb{I} \cdot Z,

где:

  • U = U0eiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2 + Rr2)1/2 — полное сопротивление,
  • Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
  • — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U=U_0\sin(\omega t+\varphi) подбором такой \mathbb{U}=U_0e^{i(\omega t + \varphi)}, что \operatorname{Im} \mathbb{U} = U. Тогда все значения токов и напряжений в схеме надо считать как F=\operatorname{Im} \mathbb{F}

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Трактовка закона Ома

Закон Ома можно просто объяснить при помощи теории Друде:

\vec \cdot e_0^{2}\cdot\tau}{m} \cdot\vec E

Здесь:

  • \! \sigma — электрическая удельная проводимость
  • \! n — концентрация электронов
  • \! e_0 — элементарный заряд
  • \! \tau — время релаксации по импульсам (время, за которое электрон «забывает» о том в какую сторону двигался)
  • \! m — эффективная масса электрона

Источник: ru.wikipedia.org


Возврат к списку


Материалы по теме:

Читайте бесплатно
№ 4 Декабрь 2021
КИПиС 2021 № 4
Тема номера:
Современная измерительная техника
События из истории измерений
20.10.1891
Родился английский физик, известный за открытие нейтрона и фотоядерной реакции, лауреат Нобелевской премии по физике 1935 года
Джеймс Чедвик
20.10.1902
День рождения разработчика МЭСМ
Лебедев Сергей Алексеевич
Конвертер единиц измерения
Мы используем файлы 'cookie', чтобы обеспечить максимальное удобство пользователям.