English
Поиск по сайту
Новости AKTAKOM(487)
Новости Anritsu(108)
Новости Fluke(134)
Новости Keithley(75)
Новости Keysight Technologies(566)
Новости Metrel(15)
Новости National Instruments(265)
Новости NIST(0)
Новости Pendulum(20)
Новости Rigol(71)
Новости Rohde & Schwarz(465)
Новости Tektronix(195)
Новости Texas Instruments(18)
Новости Yokogawa(87)
Новости Росстандарта(131)
АКТАКОМ
Anritsu
FLUKE
Keithley Instruments
Keysight Technologies
METREL
National Instruments
NIST
RIGOL
Rohde & Schwarz
Spectracom
Tektronix
Texas Instruments
Yokogawa
Росстандарт
Авторизация
Логин:
Пароль:
Забыли свой пароль?
Зарегистрироваться
Реклама на сайте

Закон Джоуля — Ленца

Об Энциклопедии измерений
Поиск:  

Закон Джо́уля — Ле́нца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем.

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

w = \vec j \cdot \vec E = \sigma E^2\!

где w — мощность выделения тепла в единице объёма, \vec j — плотность электрического тока, \vec E — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка

В математической форме этот закон имеет вид

dQ = I^2 R dt\,
Q = \int\limits_{t_1}^{t_2} I^2 R dt

где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

Q = I^2 R t\,

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи.

Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно. Сопротивление проводов (R_w\!) можно считать постоянным. А вот сопротивление нагрузки (R_c\!) растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод — нагрузка — провод) распределение выделяемой мощности (Q\!) пропорционально сопротивлению подключённых сопротивлений.

Q_w = R_w \cdot I^2
Q_c = R_c \cdot I^2

Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение

Q_c / Q_w = R_c / R_w\!

Q_c\! и R_w\! в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как R_c = V_c^2 / Q_c. Откуда следует, что Q_w = Q_c^2 \cdot R_c / V_c^2. В каждом конкретном случае величина Q_c^2 \cdot R_c является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Источник: ru.wikipedia.org


Возврат к списку

Свежий номер
№ 3 Июнь 2019
КИПиС 2019 № 3
Тема номера:
Метрология
Подписаться на журнал
WEB-приложение для подписчиков журнала
Конвертер единиц измерения